Webbläsaren som du använder stöds inte av denna webbplats. Alla versioner av Internet Explorer stöds inte längre, av oss eller Microsoft (läs mer här: * https://www.microsoft.com/en-us/microsoft-365/windows/end-of-ie-support).

Var god och använd en modern webbläsare för att ta del av denna webbplats, som t.ex. nyaste versioner av Edge, Chrome, Firefox eller Safari osv.

Low-Dose Prostacyclin Improves Cortical Perfusion following Experimental Brain Injury in the Rat.

Författare

Summary, in English

It was recently shown that prostacyclin at a low dose reduces cortical cell death following brain trauma in the rat. Conceivably, prostacyclin with its vasodilatory, anti-aggregatory, anti-adhesive and permeability-reducing properties improved a compromised perfusion caused by post-traumatic vasoconstriction, microthrombosis and increased microvascular permeability. The objective of the present study was therefore to investigate the hemodynamic effects of low-dose prostacyclin in the traumatized rat cortex. Following a fluid percussion brain injury or a sham procedure, animals were treated with a continuous intravenous infusion of prostacyclin of 1 or 2 ng x kg(-1) x min(-1), or vehicle. Blood flow ([(14)C]-iodoantipyrine), the permeability-surface area product (PS) for [(51)Cr]-EDTA, and brain water content were measured after 3 or 48 h of treatment. Blood flow values in the injured cortex were transiently reduced to 0.42 +/- 0.2 mL x min(-1) in the vehicle group 3 h following trauma from a corresponding value of about 1.6 mL x min(-1) in the sham group, with recovery of blood flow after 48 h. Prostacyclin treatment caused a dose-dependent increase in blood flow which reached statistical significance 48 h following trauma. Brain water content and PS increased in the injured cortex post trauma and the higher dose of prostacyclin increased these parameters further at 48 h compared to the vehicle group (p < 0.05). The latter effects of prostacyclin cannot be attributed to an increase in permeability, as prostacyclin did not influence PS or brain water content following sham trauma. In fact prostacyclin has been shown to have permeability-decreasing properties. We conclude that prostacyclin improves cortical perfusion following brain trauma. The simultaneous aggravation of brain edema can be explained by an increased surface area, perhaps in combination with increased capillary hydrostatic pressure.

Publiceringsår

2003

Språk

Engelska

Sidor

447-461

Publikation/Tidskrift/Serie

Journal of Neurotrauma

Volym

20

Issue

5

Dokumenttyp

Artikel i tidskrift

Förlag

Mary Ann Liebert, Inc.

Ämne

  • Basic Medicine

Status

Published

ISBN/ISSN/Övrigt

  • ISSN: 1557-9042