Du är här

The early ontogeny of neuronal nitric oxide synthase systems in the zebrafish.

Författare:
  • Bo Holmqvist
  • B Ellingsen
  • Johan Forsell
  • I Zhdanova
  • Per Alm
Publiceringsår: 2004
Språk: Engelska
Sidor: 923-935
Publikation/Tidskrift/Serie: The Journal of experimental biology
Volym: 207
Nummer: Pt 6
Dokumenttyp: Artikel
Förlag: Company Of Biologists Limited

Sammanfattning

To examine a putative role for neuronal nitric oxide synthase (nNOS) in early vertebrate development we investigated nNOS mRNA expression and cGMP production during development of the zebrafish Danio rerio. The nNOS mRNA expression in the central nervous system (CNS) and periphery showed a distinct spatio-temporal pattern in developing zebrafish embryo and young larvae. nNOS mRNA expression was first detected at 19 h postfertilisation (h.p.f.), in a bilateral subpopulation of the embryonic ventrorostral cell cluster in the forebrain. The number of nNOS mRNA-expressing cells in the brain slowly increased, also appearing in the ventrocaudal cell cluster from about 26 h.p.f., and in the dorsorostral and hindbrain cell cluster and in the medulla at 30 h.p.f. A major increase in nNOS mRNA expression started at about 40 h.p.f., and by 55 h.p.f. the expression constituted cell populations in differentiated central nuclei and in association with the proliferation zones of the brain, and in the medulla and retina. In parts of the skin, nNOS mRNA expression started at 20 h.p.f. and ended at 55 h.p.f. Between 40 and 55 h.p.f., nNOS mRNA expression started in peripheral organs, forming distinct populations after hatching within or in the vicinity of the presumptive swim bladder, enteric ganglia, and along the alimentary tract and nephritic ducts. Expression of nNOS mRNA correlated with the neuronal differentiation pattern and with the timing and degree of cGMP production. These studies indicate spatio-temporal actions by NO during embryogenesis in the formation of the central and peripheral nervous system, with possible involvement in processes such as neurogenesis, organogenesis and early physiology.

Disputation

Nyckelord

  • Medicine and Health Sciences
  • morphogenesis
  • Danio rerio
  • brain
  • retina
  • gut
  • neuronal
  • regeneration
  • differentiation
  • development
  • in situ
  • hybridisation
  • intestine
  • zebrafish

Övrigt

Published
Yes
  • ISSN: 0022-0949

Box 117, 221 00 LUND
Telefon 046-222 00 00 (växel)
Telefax 046-222 47 20
lu [at] lu [dot] se

Fakturaadress: Box 188, 221 00 LUND
Organisationsnummer: 202100-3211
Om webbplatsen

LERU logo U21 logo