Webbläsaren som du använder stöds inte av denna webbplats. Alla versioner av Internet Explorer stöds inte längre, av oss eller Microsoft (läs mer här: * https://www.microsoft.com/en-us/microsoft-365/windows/end-of-ie-support).

Var god och använd en modern webbläsare för att ta del av denna webbplats, som t.ex. nyaste versioner av Edge, Chrome, Firefox eller Safari osv.

Three-Dimensional Simulation of Nanoindentation Response of Viral Capsids. Shape and Size Effects

Författare

Summary, in English

The nanoindentation response of empty viral capsids is modeled using three-dimensional finite element analysis. Simulation with two different geometries, spherical and icosahedral, is performed using the finite element code Abaqus. The capsids are modeled as nonlinear Hookean elastic, and both small and large deformation analysis is performed. The Young's modulus is determined by calibrating the force-indentation curve to data from atomic force microscopy (AFM) experiments. Force-indentation curves for three different viral capsids are directly compared to experimental data. Predictions are made for two additional viral capsids. The results from the simulation showed a good agreement with AFM data. The paper demonstrates that over the entire range of virus sizes (or Foppl-von Karman numbers) spherical and icosahedral models yield different force responses. In particular, it is shown that capsids with dominantly spherical shape (for low Foppl-von Karman numbers) exhibit nearly linear relationship between force and indentation, which has been experimentally observed on the viral shell studies so far. However, we predict that capsids with significant faceting (for large Foppl-von Karman numbers) and thus more pronounced icosahedral shape will exhibit rather nonlinear deformation behavior.

Publiceringsår

2009

Språk

Engelska

Sidor

3370-3378

Publikation/Tidskrift/Serie

The Journal of Physical Chemistry Part B

Volym

113

Issue

11

Dokumenttyp

Artikel i tidskrift

Förlag

The American Chemical Society (ACS)

Ämne

  • Applied Mechanics
  • Biological Sciences

Nyckelord

  • AFM
  • indentation test
  • simulation
  • viral capsids

Status

Published

Forskningsgrupp

  • Mechanics

ISBN/ISSN/Övrigt

  • ISSN: 1520-5207