Webbläsaren som du använder stöds inte av denna webbplats. Alla versioner av Internet Explorer stöds inte längre, av oss eller Microsoft (läs mer här: * https://www.microsoft.com/en-us/microsoft-365/windows/end-of-ie-support).

Var god och använd en modern webbläsare för att ta del av denna webbplats, som t.ex. nyaste versioner av Edge, Chrome, Firefox eller Safari osv.

Integration operators on Bergman spaces

Författare

Summary, in English

Let ${\bold D}$ denote the unit disk in the complex plane and let $m$ be the area Lebesgue measure on ${\bold D}$. Given a positive integrable function $w$ (a weight) on ${\bold D}$, let $L^p_{\rm a}(w)$ denote the collection of analytic functions $f$ on ${\bold D}$ such that $|f|^pw$ is integrable.



Given an analytic function $g$ on ${\bold D}$, the operator $T_g$ is defined by $T_g f(z) = \int_0^{z} f(\zeta)g'(\zeta)\,d\zeta$. The authors consider conditions on $g$ such that $T_g$ is bounded on $L^p_{\rm a}(w)$.



In many cases the derivative $D$ is an isomorphism between the subspace of $L^p_{\rm a}(w)$ consisting of functions vanishing at $0$ and some space $L^p_{\rm a}(v)$ with another weight $v$. Thus, the question of boundedness or compactness of $T_g$ becomes the corresponding question for the operator of multiplication by $g'$ acting from $L^p_{\rm a}(w)$ to $L^p_{\rm a}(v)$.



The authors consider only $w$ which are radial: $w(re^{i\theta}) = w(r)$. In the first part of the paper it is shown that $\int |f|^pw\,dm \le C\int |f'(z)|^p v(|z|) \,dm(z)$, $p \ge 1$, where $v(r) = \int_r^1 w(u)\,du$. Under the assumption that $v(r) \le C(1 - r)w(r)$, which is valid in particular for $w(r) \equiv (1 - r)^\alpha$, $\alpha > -1$, it follows that $T_g$ is bounded when $g'(z)(1 - |z|)$ is bounded.



The converse can be proved in a more general setting. It is obtained by estimating the norm of the linear functional $D_\lambda\colon f \mapsto f'(\lambda)$ in terms of that of the evaluation functional $L_\lambda\colon f \mapsto f(\lambda)$. Rather general hypotheses on a Banach space of analytic functions are obtained in order that $\| D_\lambda \|(1 - |\lambda|) \le C\| L_\lambda \|$. This leads immediately to the converse: if the operator $T_g$ is bounded, then $g'(z)(1 - |z|)$ is bounded. Several classes of weights are shown to satisfy the hypotheses required for both the necessity and the sufficiency of the condition.



In all cases, the problem of compactness of $T_g$ is also considered, and the solution involves the little-oh versions of the same conditions for boundedness. In the special case where $p = 2$ and $w(r) = (1 - r)^\alpha$ the Schatten class of $T_g$ is determined.



The techniques are briefly applied to the weight $w(r) = \exp[ -\beta(1 - r)^{-\alpha}]$, $\alpha > 0$. In this case $v(r) \le C(1 - r)^{\alpha + 1}w(r)$, and that leads to the conclusion that $T_g$ is bounded when $g'(z)(1 - |z|)^{\alpha + 1}$ is bounded. The necessity of this condition is left open. A theorem of V. L. Oleinik [Zap. Naučn. Sem. Leningrad. Otdel. Mat. Inst. Steklov. (LOMI) 47 (1974), 120--137, 187, 192--193; MR0369705 (51 #5937) (Theorem 3.3)] shows that it is necessary at least when $\alpha > 1$.

Publiceringsår

1997

Språk

Engelska

Sidor

337-356

Publikation/Tidskrift/Serie

Indiana University Mathematics Journal

Volym

46

Issue

2

Dokumenttyp

Artikel i tidskrift

Förlag

Indiana University

Ämne

  • Mathematics

Status

Published

ISBN/ISSN/Övrigt

  • ISSN: 0022-2518