Webbläsaren som du använder stöds inte av denna webbplats. Alla versioner av Internet Explorer stöds inte längre, av oss eller Microsoft (läs mer här: * https://www.microsoft.com/en-us/microsoft-365/windows/end-of-ie-support).

Var god och använd en modern webbläsare för att ta del av denna webbplats, som t.ex. nyaste versioner av Edge, Chrome, Firefox eller Safari osv.

Finite element models for use in mechanics including geological engineering

Författare

Summary, in English

A number of finite element (FE) models have been developed, starting with a purely magnetic one. The magnetic model was verified against analytical solutions and the commercial FE-programme ANSYS. The magnetic model was then coupled to the wave-equation, resulting in a model governing linear magnetostriction. In the magnetostrictive model a property of two degrees of freedom, that is, displacements, was coupled to a property of one degree of freedom, that is, magnetic potential. To make this possible, non-quadratic coupling matrices had to be developed. This linear model was then verified against analytical solutions, with a good conceptual agreement. In the next step the still linear system of equations was time-propagated, using the Newmark method. This model was verified by comparing the differential step-response of the system calculated with the time propagation method, to the frequency function of the system, calculated with the harmonic model. Further, non-linear and non-linear transient models were developed and discussed. The non-linear transient model was developed for a situation where a Terfenol rod was assumed to collide periodically with a rigid wall, thus indicating a tool for analysing a Terfenol based resonant system, which could be used, for example, for ultrasonic cutting of hard and brittle materials and also for rock-blasting.

Publiceringsår

1998

Språk

Engelska

Sidor

363-369

Publikation/Tidskrift/Serie

Engineering Geology

Volym

49

Issue

3-4

Dokumenttyp

Artikel i tidskrift

Förlag

Elsevier

Ämne

  • Materials Engineering

Nyckelord

  • Finite elements
  • Magnetostriction
  • Modelling
  • Non-linearity
  • Transient modelling

Status

Published

ISBN/ISSN/Övrigt

  • ISSN: 0013-7952