Meny

Du är här

Rational characteristic functions and geometric infinite divisibility

Författare:
Publiceringsår: 2010
Språk: Engelska
Sidor: 625-637
Publikation/Tidskrift/Serie: Journal of Mathematical Analysis and Applications
Volym: 365
Nummer: 2
Dokumenttyp: Artikel
Förlag: Academic Press Inc Elsevier Science

Sammanfattning

Motivated by the fact that exponential and Laplace distributions have rational characteristic functions and are both geometric infinitely divisible (GID), we investigate the latter property in the context of more general probability distributions on the real line with rational characteristic functions of the form P(t)/Q (t), where P(t) = 1 + a(1)it + a(2)(it)(2) and Q (t) = 1 + b(1)it + b(2)(it)(2). Our results provide a complete characterization of the class of characteristic functions of this form, and include a description of their GID subclass. In particular, we obtain characteristic functions in the class and the subclass that are neither exponential nor Laplace. (C) 2009 Elsevier Inc. All rights reserved.

Disputation

Nyckelord

  • Mathematics and Statistics
  • Mixture of Laplace distributions
  • transform
  • Inverse Fourier
  • Skewed Laplace distribution
  • Geometric distribution
  • Convolution of exponential
  • distributions

Övriga

Published
Yes
  • ISSN: 0022-247X

Box 117, 221 00 LUND
Telefon 046-222 00 00 (växel)
Telefax 046-222 47 20
lu [at] lu [dot] se

Fakturaadress: Box 188, 221 00 LUND
Organisationsnummer: 202100-3211
Om webbplatsen