Webbläsaren som du använder stöds inte av denna webbplats. Alla versioner av Internet Explorer stöds inte längre, av oss eller Microsoft (läs mer här: * https://www.microsoft.com/en-us/microsoft-365/windows/end-of-ie-support).

Var god och använd en modern webbläsare för att ta del av denna webbplats, som t.ex. nyaste versioner av Edge, Chrome, Firefox eller Safari osv.

Carbon quality rather than stoichiometry controls litter decomposition in a tropical rain forest

Författare

Summary, in English

1. Ecological stoichiometry predicts important control of the relative abundance of the key elements carbon (C), nitrogen (N) and phosphorus (P) on trophic interactions. In a nutrient-poor Amazonian lowland rain forest of French Guiana, we tested the hypothesis that decomposers exploit stoichiometrically diverse plant litter more efficiently, resulting in faster litter decomposition compared to litter with a uniform stoichiometry. 2. In a field experiment in the presence or absence of soil macrofauna, we measured litter mass loss, and N and P dynamics from all possible combinations of leaf litter from four common tree species which were distinctly separated along a C:N and along a N:P gradient. 3. Mean litter mass remaining after 204†days of field exposure varied between 25.2% and 71.3% among litter treatments. Fauna increased litter mass loss by 18%, N loss by 21% and P loss by 14%. Litter species richness had no effect on litter mass loss or nutrient dynamics. In contrast, litter mass and nutrient losses increased with increasing stoichiometric dissimilarity of litter mixtures in presence of fauna, suggesting faster decomposition of a stoichiometrically more heterogeneous litter. 4. However, the effect of stoichiometric dissimilarity was smaller than the strong C quality related litter composition effect and disappeared in the absence of fauna. Increasing proportions of litter that is relatively rich in accessible C compounds (non-structural carbohydrates, phenolics) and relatively poor in recalcitrant C (condensed tannins, lignin), correlated best with litter mass loss irrespective of fauna presence. No correlation was found for any of the nutrient related litter quality parameters and decomposition. 5.Synthesis. Our results suggest that Amazonian decomposer communities studied here are primarily limited by energy, and only secondarily by litter stoichiometry. Tropical tree species might thus influence decomposers and detritivores by the production of litter of specific C quality with potentially important feedback effects on ecosystem nutrient dynamics and availability.

Publiceringsår

2010

Språk

Engelska

Sidor

754-763

Publikation/Tidskrift/Serie

Journal of Ecology

Volym

98

Issue

4

Dokumenttyp

Artikel i tidskrift

Förlag

Wiley-Blackwell

Ämne

  • Ecology

Nyckelord

  • litter chemistry
  • elemental ratios
  • detritivores
  • Amazonian lowland forest
  • soil fauna
  • phosphorus
  • litter diversity
  • nutrient dynamics
  • nitrogen

Status

Published

Forskningsgrupp

  • Soil Ecology

ISBN/ISSN/Övrigt

  • ISSN: 1365-2745