Meny

Du är här

Multilingual semantic role labeling

Författare:
Publiceringsår: 2009
Språk: Engelska
Sidor: 43-48
Publikation/Tidskrift/Serie: Proceedings of The Thirteenth Conference on Computational Natural Language Learning (CoNLL-2009)
Dokumenttyp: Konferensbidrag

Sammanfattning

This paper describes our contribution to the semantic role labeling task (SRL-only) of the CoNLL-2009 shared task in the closed challenge(Hajic et al., 2009). Our system consists of a pipeline of independent, local classifiers
that identify the predicate sense, the arguments of the predicates, and the argument labels. Using these local models, we carried out a beam search to generate a pool of candidates. We then reranked the candidates using a joint learning approach that combines the local models and proposition features.
To address the multilingual nature of the data, we implemented a feature selection procedure that systematically explored the feature space, yielding significant gains over a standard set of features. Our system achieved the second best semantic score overall with an average labeled semantic F1 of 80.31. It obtained the best F1 score on the Chinese and German data
and the second best one on English.

Disputation

Nyckelord

  • Technology and Engineering

Övriga

2009-06-04/2009-06-05
Boulder, CO, USA
Published
Yes

Box 117, 221 00 LUND
Telefon 046-222 00 00 (växel)
Telefax 046-222 47 20
lu [at] lu [dot] se

Fakturaadress: Box 188, 221 00 LUND
Organisationsnummer: 202100-3211
Om webbplatsen