Meny

Javascript verkar inte påslaget? - Vissa delar av Lunds universitets webbplats fungerar inte optimalt utan javascript, kontrollera din webbläsares inställningar.
Du är här

Dynamic Mapping of Diesel Engine through System Identification

Författare:
Publiceringsår: 2010
Språk: Engelska
Sidor: 3015-3020
Dokumenttyp: Konferensbidrag

Sammanfattning

From a control design point of view, modern diesel engines are dynamic, nonlinear, MIMO systems. This paper presents a method to find low-complexity black-box dynamic models suitable for model predictive control (MPC) of NOx and soot emissions based on on-line emissions measurements. A four-input-five-output representation of the engine is considered, with fuel injection timing, fuel injection duration, exhaust gas recirculation (EGR) and variable geometry turbo (VGT) valve positions as inputs, and indicated mean effective pressure, combustion phasing, peak pressure derivative, NOx emissions, and soot emissions as outputs. Experimental data were collected on a six-cylinder heavy-duty engine at 30 operating points. The identification procedure starts by identifying local linear models at each operating point. To reduce the number of dynamic models necessary to describe the engine dynamics, Wiener
models are introduced and a clustering algorithm is proposed. A resulting set of two to five dynamic models is shown to be able to predict all outputs at all operating points with good accuracy.

Disputation

Nyckelord

  • Technology and Engineering
  • Diesel engines
  • System identification
  • Wiener models

Övriga

2010 American Control Conference
2010-06-30
Baltimore, MD, USA
Published
Yes
  • LCCC

Box 117, 221 00 LUND
Telefon 046-222 00 00 (växel)
Telefax 046-222 47 20
lu [at] lu [dot] se

Fakturaadress: Box 188, 221 00 LUND
Organisationsnummer: 202100-3211
Om webbplatsen