Meny

Javascript verkar inte påslaget? - Vissa delar av Lunds universitets webbplats fungerar inte optimalt utan javascript, kontrollera din webbläsares inställningar.
Du är här

Scalable Distributed Kalman Filtering for Mass-Spring Systems

Författare:
Publiceringsår: 2007
Språk: Engelska
Dokumenttyp: Konferensbidrag

Sammanfattning

This paper considers Kalman Filtering for massspring systems. The aim is a scalable distributed implementation where nodes communicate in a sparse pattern and the state estimate for each node is available locally and usable for control. The focus is on translation invariant systems, to make use of the powerful results available based on Fourier Transform methods. In this case it is known that Kalman Filters will have a coupling that asymptotically falls off exponentially with distance. Examples are shown where the Kalman Filter gains can be truncated very narrowly with small performance loss even though the coupling falls off slowly. A step towards spatially varying systems is taken in analyzing a system with periodically placed sensors, and it is shown that the original design is insensitive to this spatial variation.

Nyckelord

  • Control Engineering
  • Kalman Filtering
  • distributed estimation
  • flexible structures

Övriga

46th IEEE Conference on Decision and Control, 2007
Published

Box 117, 221 00 LUND
Telefon 046-222 00 00 (växel)
Telefax 046-222 47 20
lu [at] lu.se

Fakturaadress: Box 188, 221 00 LUND
Organisationsnummer: 202100-3211
Om webbplatsen