Webbläsaren som du använder stöds inte av denna webbplats. Alla versioner av Internet Explorer stöds inte längre, av oss eller Microsoft (läs mer här: * https://www.microsoft.com/en-us/microsoft-365/windows/end-of-ie-support).

Var god och använd en modern webbläsare för att ta del av denna webbplats, som t.ex. nyaste versioner av Edge, Chrome, Firefox eller Safari osv.

Error analysis of coarse-graining for stochastic lattice dynamics

Författare

Summary, in English

The coarse‐grained Monte Carlo (CGMC) algorithm was originally proposed in the series of works [M. A. Katsoulakis, A. J. Majda, and D. G. Vlachos, J. Comput. Phys., 186 (2003), pp. 250–278; M. A. Katsoulakis, A. J. Majda, and D. G. Vlachos, Proc. Natl. Acad. Sci. USA, 100 (2003), pp. 782–787; M. A. Katsoulakis and D. G. Vlachos, J. Chem. Phys., 119 (2003), pp. 9412–9427]. In this paper we further investigate the approximation properties of the coarse‐graining procedure and provide both analytical and numerical evidence that the hierarchy of the coarse models is built in a systematic way that allows for error control in both transient and long‐time simulations. We demonstrate that the numerical accuracy of the CGMC algorithm as an approximation of stochastic lattice spin flip dynamics is of order two in terms of the coarse‐graining ratio and that the natural small parameter is the coarse‐graining ratio over the range of particle/particle interactions. The error estimate is shown to hold in the weak convergence sense. We employ the derived analytical results to guide CGMC algorithms and demonstrate a CPU speed‐up in demanding computational regimes that involve nucleation, phase transitions, and metastability.

Publiceringsår

2006

Språk

Engelska

Sidor

2270-2296

Publikation/Tidskrift/Serie

SIAM Journal on Numerical Analysis

Volym

44

Issue

6

Dokumenttyp

Artikel i tidskrift

Förlag

Society for Industrial and Applied Mathematics

Ämne

  • Mathematics

Nyckelord

  • coarse‐grained stochastic processes
  • Monte Carlo simulations
  • birth‐death process
  • detailed balance
  • Arrhenius dynamics
  • Gibbs measures
  • weak error estimates
  • microscopic reconstruction

Status

Published

ISBN/ISSN/Övrigt

  • ISSN: 0036-1429