Webbläsaren som du använder stöds inte av denna webbplats. Alla versioner av Internet Explorer stöds inte längre, av oss eller Microsoft (läs mer här: * https://www.microsoft.com/en-us/microsoft-365/windows/end-of-ie-support).

Var god och använd en modern webbläsare för att ta del av denna webbplats, som t.ex. nyaste versioner av Edge, Chrome, Firefox eller Safari osv.

Competitive adsorption between beta-casein or beta-lactoglobulin and model milk membrane lipids at oil-water interfaces

Författare

Summary, in English

This study investigated the competitive adsorption between milk proteins and model milk membrane lipids at the oil-water interface and its dependence on the state of the lipid dispersion and the formation of emulsions. Both protein and membrane lipid surface load were determined using a serum depletion technique. The membrane lipid mixture used was a model milk membrane lipid system, containing dioleoylphosphatidylcholine, dioleoylphosphatidylethanolamine, milk sphingomyelin, dioleoylphosphatidylserine, and soybean phosphatidylinositol. The model composition mimics the lipid composition of natural milk fat globule membranes. The interactions were studied for two proteins, beta-lactoglobulin and P-casein. The mixing order was varied to allow for differentiation between equilibrium structures and nonequilibrium structures. The results showed more than monolayer adsorption for most combinations. Proteins dominated at the oil-water interface in the protein-emulsified emulsion even after 48 h of exposure to a vesicular dispersion of membrane lipids. The membrane lipids dominated the oil-water interface in the case of the membrane lipid emulsified emulsion even after equilibration with a protein solution. Protein displacement with time was observed only for emulsions in which both membrane lipids and beta-casein were included during the emulsification, This study shows that kinetics controls the structures rather than the thermodynamic equilibrium, possibly resulting in structures more complex than an adsorbed monolayer. Thus, it can be expected that procedures such as the mixing order during emulsion preparation are of crucial importance to the emulsification performance.

Avdelning/ar

Publiceringsår

2005

Språk

Engelska

Sidor

716-724

Publikation/Tidskrift/Serie

Journal of Agricultural and Food Chemistry

Volym

53

Issue

3

Dokumenttyp

Artikel i tidskrift

Förlag

The American Chemical Society (ACS)

Ämne

  • Agricultural Science, Forestry and Fisheries

Status

Published

ISBN/ISSN/Övrigt

  • ISSN: 0021-8561