Webbläsaren som du använder stöds inte av denna webbplats. Alla versioner av Internet Explorer stöds inte längre, av oss eller Microsoft (läs mer här: * https://www.microsoft.com/en-us/microsoft-365/windows/end-of-ie-support).

Var god och använd en modern webbläsare för att ta del av denna webbplats, som t.ex. nyaste versioner av Edge, Chrome, Firefox eller Safari osv.

Transport Gap Opening and High On-Off Current Ratio in Trilayer Graphene with Self-Aligned Nanodomain Boundaries.

Författare

  • Han-Chun Wu
  • Alexander N Chaika
  • Tsung-Wei Huang
  • Askar Syrlybekov
  • Mourad Abid
  • Victor Yu Aristov
  • Olga V Molodtsova
  • Sergey V Babenkov
  • D Marchenko
  • Jaime Sánchez-Barriga
  • Partha Sarathi Mandal
  • Andrei Yu Varykhalov
  • Yuran Niu
  • Barry E Murphy
  • Sergey A Krasnikov
  • Olaf Lübben
  • Jing Jing Wang
  • Huajun Liu
  • Li Yang
  • Hongzhou Zhang
  • Mohamed Abid
  • Yahya T Janabi
  • Sergei N Molotkov
  • Ching-Ray Chang
  • Igor Shvets

Summary, in English

Trilayer graphene exhibits exceptional electronic properties that are of interest both for fundamental science and for technological applications. The ability to achieve a high on-off current ratio is the central question in this field. Here, we propose a simple method to achieve a current on-off ratio of 10(4) by opening a transport gap in Bernal-stacked trilayer graphene. We synthesized Bernal-stacked trilayer graphene with self-aligned periodic nanodomain boundaries (NBs) on the technologically relevant vicinal cubic-SiC(001) substrate and performed electrical measurements. Our low-temperature transport measurements clearly demonstrate that the self-aligned periodic NBs can induce a charge transport gap greater than 1.3 eV. More remarkably, the transport gap of ∼0.4 eV persists even at 100 K. Our results show the feasibility of creating new electronic nanostructures with high on-off current ratios using graphene on cubic-SiC.

Publiceringsår

2015

Språk

Engelska

Sidor

8967-8975

Publikation/Tidskrift/Serie

ACS Nano

Volym

9

Issue

9

Dokumenttyp

Artikel i tidskrift

Förlag

The American Chemical Society (ACS)

Ämne

  • Nano Technology

Status

Published

ISBN/ISSN/Övrigt

  • ISSN: 1936-086X