Webbläsaren som du använder stöds inte av denna webbplats. Alla versioner av Internet Explorer stöds inte längre, av oss eller Microsoft (läs mer här: * https://www.microsoft.com/en-us/microsoft-365/windows/end-of-ie-support).

Var god och använd en modern webbläsare för att ta del av denna webbplats, som t.ex. nyaste versioner av Edge, Chrome, Firefox eller Safari osv.

Experimental Investigations of an Industrial Lean Premixed Gas Turbine Combustor With High Swirling Flow

Författare

Redaktör

  • Sudarshan Kumar

Summary, in English

In the interest of understanding the prospects and restrictions of fuel flexibility in a prototype industrial gas turbine combustor, an experimental study is performed. Methane is used to characterize standard gas turbine operation; in addition a non-standard fuel is explored, generic syngas (67.5 % hydrogen, 22.5 % carbon monoxide and 10 % methane). Both these gases are also investigated after dilution with Nitrogen to a Wobbe index of 15 MJ/m3. All measurements are conducted at a preheat temperature of 650 K to mimic gas turbine conditions. The pressure is atmospheric. The burner examined is a downscaled industrial 4th generation DLE (dry low emissions) burner. This swirl-stabilized burner features three concentric sectors: the RPL (rich-pilot-lean), the Pilot and the Main. The burner is designed to be coupled with a quartz combustion liner allowing a variety of laser and optical diagnostics, including PIV (Particle Image Velocimetry) and OH-pLIF (planar Laser Induced Florescence). The mentioned techniques are used herein for identification of combustion and flow phenomena. For this study the measurement region is located at the burner recirculation zone. CFD (RANS) calculations are compared with the OH-pLIF images to identify the zones of active combustion. CFD is also used to see the effect of recirculation zone position when moving towards the lean blow out limit. Additionally, integral scales are calculated for each of the combustion cases and from these, the Kolmogorov scales are estimated. The flow field, imaged by PIV, shows that the recirculation zone location along the major flow axis is strongly dependent on the presence of combustion.

Publiceringsår

2012

Språk

Engelska

Sidor

559-569

Publikation/Tidskrift/Serie

Proceedings of ASME, GTIndia2012-9681

Dokumenttyp

Konferensbidrag

Förlag

American Society Of Mechanical Engineers (ASME)

Ämne

  • Atom and Molecular Physics and Optics
  • Energy Engineering

Nyckelord

  • Combustion
  • syngas
  • hydrogen
  • CFD
  • Fluid mechanics

Conference name

ASME 2012 Gas Turbine India Conference

Conference date

2012-12-01

Conference place

Mumbai, Maharashtra, India

Status

Published

ISBN/ISSN/Övrigt

  • ISBN: 978-0-7918-4516-5