Webbläsaren som du använder stöds inte av denna webbplats. Alla versioner av Internet Explorer stöds inte längre, av oss eller Microsoft (läs mer här: * https://www.microsoft.com/en-us/microsoft-365/windows/end-of-ie-support).

Var god och använd en modern webbläsare för att ta del av denna webbplats, som t.ex. nyaste versioner av Edge, Chrome, Firefox eller Safari osv.

Genetic and nongenetic determinants of skeletal muscle glucose transporter 4 messenger ribonucleic acid levels and insulin action in twins

Författare

Summary, in English

Context: Insulin-stimulated glucose uptake in skeletal muscle is mediated through translocation of the insulin-sensitive glucose transporter 4 ( GLUT4)-containing vesicles to the plasma membrane. Thus, skeletal muscle GLUT4 content plays an important role in whole-body insulin sensitivity. Objectives: The objectives of this study were 1) to examine the relative impact of genetic vs. environmental factors on skeletal muscle GLUT4 mRNA expression using biometric modeling, and 2) to identify factors influencing the expression of GLUT4 and insulin-stimulated whole-body metabolism. Design: We measured GLUT4 mRNA expression in biopsies from young and elderly monozygotic (MZ) and dizygotic (DZ) twins before and during a 2-h hyperinsulinemic euglycemic clamp including 3-H-3-tritiated glucose and indirect calorimetry. Participants: A random sample of young (22-31 yr; n = 89) and elderly (57 - 66 yr; n = 69) same sex MZ and DZ twin pairs identified through the Danish Twin Register were studied. Results: We found a major genetic component in the control of basal and insulin-stimulated GLUT4 mRNA expression in young and elderly twins. GLUT4 gene expression increased upon insulin stimulation in both young and elderly twins. Multiple regression analysis revealed that both basal and insulin-stimulated GLUT4 mRNA expressions were positively related to birth weight and total body aerobic capacity and were higher in MZ vs. DZ twins as well as in males vs. females. Both basal and insulin-stimulated expressions of GLUT4 were independently and significantly related to whole-body in vivo insulin action, nonoxidative glucose metabolism, and glucose oxidation. Conclusion: We show that skeletal muscle GLUT4 gene expression in twins is significantly and independently related to glucose metabolism and is determined by both genetic and nongenetic factors, including zygosity and birth weight.

Publiceringsår

2006

Språk

Engelska

Sidor

702-708

Publikation/Tidskrift/Serie

Journal of Clinical Endocrinology and Metabolism

Volym

91

Issue

2

Dokumenttyp

Artikel i tidskrift

Förlag

Oxford University Press

Ämne

  • Endocrinology and Diabetes

Status

Published

Forskningsgrupp

  • Genomics, Diabetes and Endocrinology

ISBN/ISSN/Övrigt

  • ISSN: 1945-7197