Webbläsaren som du använder stöds inte av denna webbplats. Alla versioner av Internet Explorer stöds inte längre, av oss eller Microsoft (läs mer här: * https://www.microsoft.com/en-us/microsoft-365/windows/end-of-ie-support).

Var god och använd en modern webbläsare för att ta del av denna webbplats, som t.ex. nyaste versioner av Edge, Chrome, Firefox eller Safari osv.

Energy Analysis for Graphics Processors using Novel Methods & Efficient Multi-View Rendering

Författare

  • Björn M Johnsson

Summary, in English

Real-time rendering is increasingly being performed on battery powered devices, such as laptops and mobile phones. As a result, performance in rendering time is not the only important factor, but the energy consumption is also becoming more and more important, as a lower energy usage directly translates to longer battery time. The main topic of this thesis is energy consumption of graphics processors. To examine this, we perform high-frequency measurements of a number of graph- ics devices’ power consumption. Simultaneously, we render real-time graphics workloads to analyze the power consumption for a number of devices, algorithms, and settings. We draw a number of conclusions for different platforms, e.g., that it is incorrect to assume a direct correlation between rendering time and per-frame energy consumption. We also present a method for evaluating if there is such a correlation on a specific, efficiently utilized, platform. This method uses Pareto frontiers to filter out measurements that are inefficient, with respect to render- ing time and energy consumption, and analyses only measured data points with a possible trade-off. Our long-term goal is to use our conclusions for developing energy-efficient algorithms, as well as raising awareness in the developer commu- nity to consider rendering time and energy consumption while developing real- time graphics algorithms. Furthermore, we develop and improve methods for cor- relating energy consumption on a per-frame basis with other information collected for specific frames, to enable improved analysis regarding real-time graphics en- ergy consumption.

Our second topic is efficient multi-view rendering. We have developed an opti- mized algorithm for multi-view ray tracing, targeting auto-stereoscopic displays, which performs up to an order of magnitude faster than previous state of the art algorithms. In addition, we have examined the feasibility of enabling a proposed higher-dimensional rasterizer implemented in hardware to render multi-view and stereoscopic image sets in a single pass. We find it straightforward to adapt a higher-dimensional rasterizer to support multi-view rendering, and propose im- provements to enhance the rendering performance for such applications.

Publiceringsår

2014

Språk

Engelska

Dokumenttyp

Doktorsavhandling

Förlag

Department of Computer Science, Lund University

Ämne

  • Computer Science

Nyckelord

  • Computer graphics
  • energy consumption
  • energy measurements
  • multi-view rendering

Status

Published

Forskningsgrupp

  • Computer Graphics

ISBN/ISSN/Övrigt

  • ISBN: 978-91-7623-027-5

Försvarsdatum

3 oktober 2014

Försvarstid

10:15

Försvarsplats

Lecture hall E:1406, E-building, Ole Römers väg 3, Lund University Faculty of Engineering

Opponent

  • Håkan Grahn (Professor)