Webbläsaren som du använder stöds inte av denna webbplats. Alla versioner av Internet Explorer stöds inte längre, av oss eller Microsoft (läs mer här: * https://www.microsoft.com/en-us/microsoft-365/windows/end-of-ie-support).

Var god och använd en modern webbläsare för att ta del av denna webbplats, som t.ex. nyaste versioner av Edge, Chrome, Firefox eller Safari osv.

Unveiling and controlling the electronic structure of oxidized semiconductor surfaces: Crystalline oxidized InSb(100)(1 x 2)-O

Författare

  • J. J. K. Lang
  • M. P. J. Punkkinen
  • M. Tuominen
  • H. -P. Hedman
  • M. Vaha-Heikkila
  • V. Polojarvi
  • J. Salmi
  • V. -M. Korpijarvi
  • Karina Schulte
  • M. Kuzmin
  • R. Punkkinen
  • P. Laukkanen
  • M. Guina
  • K. Kokko

Summary, in English

The exothermic nature of oxidation causes nearly all semiconductor applications in various fields like electronics, medicine, photonics, and sensor technology to acquire an oxidized semiconductor surface part during the application manufacturing. The significance of understanding and controlling the atomic scale properties of oxidized semiconductor surfaces is expected to increase even further with the development of nanoscale semiconductor crystals. The nature of oxidized semiconductor layers is, however, hard to predict and characterize as they are usually buried and amorphous. To shed light on these issues, we pursue a different approach based on oxidized III-V semiconductor layers that are crystalline. We present a comprehensive characterization of oxidized crystalline InSb(100)(1 x 2)-O layers by ab initio calculations, photoelectron spectroscopy, scanning tunneling microscopy, and spectroscopy, and demonstrate the electronic band structures of different oxidized phases of the semiconductor, which elucidate the previous contradictory semiconductor-oxidation effects. At 0.5 monolayer (ML) oxidation, oxygen atoms tend to occupy subsurface Sb sites, leading to metallic states in the semiconductor band gap, which arise from top dimers. When the oxidation is increased to the 1.0-2.0 ML concentration, oxygen occupies also interstitial sites, and the insulating band structure without gap states is stabilized with unusual occupied In dangling bonds. In contrast, the 2.5-3.0 ML oxide phases undergo significant changes toward a less ordered structure. The findings suggest a methodology for manipulating the electronic structure of oxidized semiconductor layers.

Publiceringsår

2014

Språk

Engelska

Publikation/Tidskrift/Serie

Physical Review B (Condensed Matter and Materials Physics)

Volym

90

Issue

4

Dokumenttyp

Artikel i tidskrift

Förlag

American Physical Society

Ämne

  • Physical Sciences
  • Natural Sciences

Status

Published

ISBN/ISSN/Övrigt

  • ISSN: 1098-0121