Webbläsaren som du använder stöds inte av denna webbplats. Alla versioner av Internet Explorer stöds inte längre, av oss eller Microsoft (läs mer här: * https://www.microsoft.com/en-us/microsoft-365/windows/end-of-ie-support).

Var god och använd en modern webbläsare för att ta del av denna webbplats, som t.ex. nyaste versioner av Edge, Chrome, Firefox eller Safari osv.

Spatial Separation of Closely-Spaced Users in Measured Massive Multi-User MIMO Channels

Författare

Summary, in English

Fully-synchronous measurements of a massive multi-user multiple-input multiple-output (MU-MIMO) radio propagation channel are presented. We evaluate the ability of a massive MIMO system to spatially separate users located close to each other in line-of-sight (LOS) propagation conditions. The system consists of a base-station (BS) antenna array equipped with 64 dual-polarized antenna elements (128 ports) arranged

in a cylindrical configuration, and eight single-antenna users. The users are confined to a five-meter diameter circle and move randomly at pedestrian speeds. The BS antenna array is located on top of a 20 m tall building and has LOS to the users. We examine user separability by studying singular value spread

of the MU-MIMO channel matrix for several subsets of BS antenna array ports, along with sum-rate capacity and achievable sum-rates with both zero-forcing and matched-filtering linear precoders. We also analyze the performance of the user with the lowest rate. Finally, a comparison between the performance offered by the massive MIMO system and that of a conventional MU-MIMO system is provided. To the best of our knowledge, this is the first report of fully-synchronous dynamic measurements of a massive MIMO system. Our investigation shows that even users located close to each other in LOS propagation conditions can be spatially separated in a massive MIMO system.

Publiceringsår

2015

Språk

Engelska

Sidor

1441-1446

Publikation/Tidskrift/Serie

2015 IEEE International Conference on Communications (ICC)

Dokumenttyp

Konferensbidrag

Förlag

IEEE - Institute of Electrical and Electronics Engineers Inc.

Ämne

  • Electrical Engineering, Electronic Engineering, Information Engineering

Nyckelord

  • multi-user multiple-input multiple-output systems
  • MU-MIMO
  • massive MIMO
  • large-scale MIMO
  • MIMO channel measurements
  • spatial separation
  • singular value spread
  • sum-rate capacity
  • sum-rate
  • linear precoder

Conference name

IEEE International Conference on Communications, ICC 2015

Conference date

2015-06-08 - 2015-06-12

Conference place

London, United Kingdom

Status

Published