Meny

Javascript verkar inte påslaget? - Vissa delar av Lunds universitets webbplats fungerar inte optimalt utan javascript, kontrollera din webbläsares inställningar.
Du är här

A dimerized single-chain variable fragment system for the assessment of neutralizing activity of phage display-selected antibody fragments specific for cytomegalovirus.

Författare:
  • Fredrika Carlsson
  • Mirko Trilling
  • Franck Perez
  • Mats Ohlin
Publiceringsår: 2012
Språk: Engelska
Sidor: 69-78
Publikation/Tidskrift/Serie: Journal of Immunological Methods
Volym: 376
Nummer: Online 01 Dec 2011
Dokumenttyp: Artikel i tidskrift
Förlag: Elsevier

Sammanfattning

Abstract in Undetermined

Cytomegalovirus (CMV) causes severe sequelae in congenitally infected newborns and may cause life-threatening disease in immuno-deficient patients. Recent findings demonstrate the possibility to alleviate the disease by infusing intravenous immunoglobulin G (IgG) preparations, indicating that antibodies are an effective therapeutic option. Modern molecular methodologies, like phage display, allow for the development of specific antibodies targeting virtually any antigen, including those of CMV. However, such methodologies do not in general result in products that by themselves mediate biological activity. To facilitate a semi-high-throughput approach for functional screening in future efforts to develop efficacious antibodies against CMV, we have integrated two different approaches to circumvent potential bottlenecks in such efforts. Firstly, we explored an approach that permits easy transfer of antibody fragment encoding genes from commonly used phage display vectors into vectors for the production of divalent immunoglobulins. Secondly, we demonstrate that such proteins can be applied in a novel reporter-based neutralization assay to establish a proof-of-concept workflow for the generation of neutralizing antibodies against CMV. We validated our approach by showing that divalent antibodies raised against the antigenic domain (AD)-2 region of gB effectively neutralized three different CMV strains (AD169, Towne and TB40/E), whereas two antibodies against the AD-1 region of gB displayed minor neutralizing capabilities. In conclusion, the methods investigated in this proof-of-concept study enables for a semi-high-throughput workflow in the screening and investigation of biological active antibodies.

Nyckelord

  • Immunology in the medical area

Övriga

Published
  • ISSN: 1872-7905

Box 117, 221 00 LUND
Telefon 046-222 00 00 (växel)
Telefax 046-222 47 20
lu [at] lu.se

Fakturaadress: Box 188, 221 00 LUND
Organisationsnummer: 202100-3211
Om webbplatsen