Webbläsaren som du använder stöds inte av denna webbplats. Alla versioner av Internet Explorer stöds inte längre, av oss eller Microsoft (läs mer här: * https://www.microsoft.com/en-us/microsoft-365/windows/end-of-ie-support).

Var god och använd en modern webbläsare för att ta del av denna webbplats, som t.ex. nyaste versioner av Edge, Chrome, Firefox eller Safari osv.

Beta-cell-targeted overexpression of phosphodiesterase 3B in mice causes impaired insulin secretion, glucose intolerance and deranged glucose morphology.

Författare

Summary, in English

The second messenger cAMP mediates potentiation of glucose-stimulated insulin release. Use of inhibitors of cAMP-hydrolyzing phosphodiesterase (PDE) 3 and overexpression of PDE3B in vitro have demonstrated a regulatory role for this enzyme in insulin secretion. In this work, the physiological significance of PDE3B-mediated degradation of cAMP for the regulation of insulin secretion in vivo and glucose homeostasis was investigated in transgenic mice overexpressing PDE3B in pancreatic beta-cells. A 2-fold overexpression of PDE3B protein and activity blunted the insulin response to intravenous glucose, resulting in reduced glucose disposal. The effects were "dose"-dependent because mice overexpressing PDE3B 7-fold failed to increase insulin in response to glucose and hence exhibited pronounced glucose intolerance. Also, the insulin secretory response to intravenous glucagon-like peptide 1 was reduced in vivo. Similarly, islets stimulated in vitro exhibited reduced insulin secretory capacity in response to glucose and glucagon-like peptide 1. Perifusion experiments revealed that the reduction specifically affected the first phase of glucose-stimulated insulin secretion. Furthermore, morphological examinations demonstrated deranged islet cytoarchitecture. In conclusion, these results are consistent with an essential role for PDE3B in cAMP-mediated regulation of insulin release and glucose homeostasis.

Ämne

  • Cell and Molecular Biology

Status

Published

Forskningsgrupp

  • Diabetes - Molecular Metabolism
  • Insulin Signal Transduction

ISBN/ISSN/Övrigt

  • ISSN: 1083-351X