Webbläsaren som du använder stöds inte av denna webbplats. Alla versioner av Internet Explorer stöds inte längre, av oss eller Microsoft (läs mer här: * https://www.microsoft.com/en-us/microsoft-365/windows/end-of-ie-support).

Var god och använd en modern webbläsare för att ta del av denna webbplats, som t.ex. nyaste versioner av Edge, Chrome, Firefox eller Safari osv.

Vasopressin-induced mouse urethral contraction is modulated by caveolin-1.

Författare

Summary, in English

Caveolae are 50-100nm large invaginations in the cell membrane that are considered to play roles in receptor signaling. Here we aimed to investigate the expression and distribution of the arginine-vasopressin (AVP) V1a receptor and its functional dependence on caveolin-1 (Cav1) in the mouse urethra. Female Cav1 knockout (KO) and wild type (WT) mice were used, and urethral preparations were micro-dissected for mechanical experiments. Methyl-β-cyclodextrin (mβcd) was used to deplete cholesterol and to disrupt caveolae. Protein expression and localization was determined using immunofluorescence and western blotting and transcript expression was determined by qRT-PCR. We found that Cav1 and AVP V1a receptors were expressed in urethral smooth muscle cells with apparent co-localization at the cell membrane. AVP caused urethral contraction that was inhibited by the V1a receptor antagonist SR49059. Concentration-response curves for AVP were right-shifted and maximal contraction was reduced in Cav1 KO mice and after mβcd treatment. In addition to caveolin-1 we also detected caveolin-2, cavin-1 and cavin-3 in the mouse urethra by western blotting. Caveolin-2, cavin-1 and cavin-3 as well as V1a receptor expression was reduced in KO urethra. We conclude that AVP regulates urethral contractility via the V1a receptor through a Cav1-dependent mechanism involving, in part, altered V1a receptor expression.

Publiceringsår

2015

Språk

Engelska

Sidor

59-65

Publikation/Tidskrift/Serie

European Journal of Pharmacology

Volym

750

Dokumenttyp

Artikel i tidskrift

Förlag

Elsevier

Ämne

  • Pharmacology and Toxicology

Status

Published

Forskningsgrupp

  • Cellular Biomechanics
  • Vascular Physiology
  • Urology

ISBN/ISSN/Övrigt

  • ISSN: 1879-0712