Javascript verkar inte påslaget? - Vissa delar av Lunds universitets webbplats fungerar inte optimalt utan javascript, kontrollera din webbläsares inställningar.
Du är här

An improvement of Hoffmann-Jorgensen's inequality

Publiceringsår: 2000
Språk: Engelska
Sidor: 851-862
Publikation/Tidskrift/Serie: Annals of Probability
Volym: 28
Nummer: 2
Dokumenttyp: Artikel i tidskrift
Förlag: Institute of Mathematical Statistics


Let B be a Banach space and F any family of bounded linear functionals on B of norm at most one. For x ∈ B set || x || = supΛ∈F Λ (x) (||· || is at least a seminorm on B). We give probability estimates for the tail probability of S* n = max1≤ k≤ n ||Σk j=1 Xj || where {Xi}n i=1 are independent symmetric Banach space valued random elements. Our method is based on approximating the probability that S* n exceeds a threshold defined in terms of Σk j=1 Y(j), where Y(r) denotes the rth largest term of {|| Xi ||}n i=1. Using these tail estimates, essentially all the known results concerning the order of magnitude or finiteness of quantities such as EΦ(|| Sn ||) and EΦ(S* n) follow (for any fixed 1 ≤ n ≤ ∞). Included in this paper are uniform Lp bounds of S* n which are within a factor of 4 for all p ≥ 1 and within a factor of 2 in the limit as p → ∞.


  • Probability Theory and Statistics
  • expo- nential inequalities
  • Tail probability inequalities
  • Hoffmann-Jorgensen's inequality
  • Banach space valued random variables


  • ISSN: 0091-1798

Box 117, 221 00 LUND
Telefon 046-222 00 00 (växel)
Telefax 046-222 47 20
lu [at]

Fakturaadress: Box 188, 221 00 LUND
Organisationsnummer: 202100-3211
Om webbplatsen