Webbläsaren som du använder stöds inte av denna webbplats. Alla versioner av Internet Explorer stöds inte längre, av oss eller Microsoft (läs mer här: * https://www.microsoft.com/en-us/microsoft-365/windows/end-of-ie-support).

Var god och använd en modern webbläsare för att ta del av denna webbplats, som t.ex. nyaste versioner av Edge, Chrome, Firefox eller Safari osv.

Development of IDF-curves for tropical india by random cascade modeling

Författare

Summary, in English

Efficient design of urban drainage systems is based on statistical analysis of past rainfall events at fine time scales. However, fine time scale rainfall data are usually lacking in many parts of the world. A possible way forward is to develop methods to derive fine time scale rain intensities from daily observations. This paper applied cascade-based disaggregation modeling for generation of fine time scale rainfall data for Mumbai, India from daily rainfall data. These data were disaggregated to 10-min values. The model was used to disaggregate daily data for the period 1951–2004 and develop intensity-duration-frequency (IDF) relationships. This disaggregation technique is commonly used assuming scale-invariance using constant parameters. For the Mumbai rains it was found better to use parameters dependent on time scale and rain volume. Very good agreement between modeled and observed disaggregation series was found for the time scales larger than 1/2 h for the 1/2-yr period when short term data were available. Although the parameters were allowed to change with time scale, the rain intensities of duration shorter than 1/2 h were overestimated. When IDF-curves had been established, they showed that the current design standard for Mumbai city, 25 mm h−1, has a return period of less than one year. Thus, annual recurring flooding problems in Mumbai appear evident.

Publiceringsår

2013

Språk

Engelska

Sidor

4709-4738

Publikation/Tidskrift/Serie

Hydrology and Earth System Sciences Discussions

Volym

10

Issue

4

Dokumenttyp

Artikel i tidskrift

Förlag

Copernicus GmbH

Ämne

  • Environmental Engineering

Status

Published

ISBN/ISSN/Övrigt

  • ISSN: 1812-2108