Webbläsaren som du använder stöds inte av denna webbplats. Alla versioner av Internet Explorer stöds inte längre, av oss eller Microsoft (läs mer här: * https://www.microsoft.com/en-us/microsoft-365/windows/end-of-ie-support).

Var god och använd en modern webbläsare för att ta del av denna webbplats, som t.ex. nyaste versioner av Edge, Chrome, Firefox eller Safari osv.

Induction of angiotensin converting enzyme after miR-143/145 deletion is critical for impaired smooth muscle contractility.

Författare

Summary, in English

MicroRNAs have emerged as regulators of smooth muscle cell phenotype with a role in smooth muscle-related disease. Studies have shown that miR-143 and miR-145 are the most highly expressed microRNAs in smooth muscle cells, controlling differentiation and function. The effect of miR-143/145 knockout has been established in the vasculature but not in smooth muscle from other organs. Using knockout mice we found that maximal contraction induced by either depolarization or phosphatase inhibition was reduced in vascular and airway smooth muscle but maintained in the urinary bladder. Furthermore, a reduction of media thickness and reduced expression of differentiation markers was seen in the aorta but not in the bladder. Supporting the view that phenotype switching depends on a tissue-specific target of miR-143/145, we found induction of angiotensin converting enzyme in the aorta but not in the bladder where angiotensin converting enzyme was expressed at a low level. Chronic treatment with angiotensin type-1 receptor antagonist restored contractility in miR-143/145-deficient aorta while leaving bladder contractility unaffected. This shows that tissue-specific targets are critical for the effects of miR-143/145 on smooth muscle differentiation and that angiotensin converting enzyme is one such target.

Publiceringsår

2014

Språk

Engelska

Sidor

1093-1101

Publikation/Tidskrift/Serie

American Journal of Physiology: Cell Physiology

Volym

307

Issue

12

Dokumenttyp

Artikel i tidskrift

Förlag

American Physiological Society

Ämne

  • Physiology
  • Cell and Molecular Biology

Status

Published

Forskningsgrupp

  • Cellular Biomechanics
  • Vascular Physiology
  • Lung Biology

ISBN/ISSN/Övrigt

  • ISSN: 1522-1563