Webbläsaren som du använder stöds inte av denna webbplats. Alla versioner av Internet Explorer stöds inte längre, av oss eller Microsoft (läs mer här: * https://www.microsoft.com/en-us/microsoft-365/windows/end-of-ie-support).

Var god och använd en modern webbläsare för att ta del av denna webbplats, som t.ex. nyaste versioner av Edge, Chrome, Firefox eller Safari osv.

Probabilistic Joint Image Segmentation and Labeling by Figure-Ground Composition

Författare

Summary, in English

We propose a layered statistical model for image segmentation and labeling obtained by combining independently extracted, possibly overlapping sets of figure-ground (FG) segmentations. The process of constructing consistent image segmentations, called tilings, is cast as optimization over sets of maximal cliques sampled from a graph connecting all non-overlapping figure-ground segment hypotheses. Potential functions over cliques combine unary, Gestalt-based figure qualities, and pairwise compatibilities among spatially neighboring segments, constrained by T-junctions and the boundary interface statistics of real scenes. Building on the segmentation layer, we further derive a joint image segmentation and labeling model (JSL) which, given a bag of FGs, constructs a joint probability distribution over both the compatible image interpretations (tilings) composed from those segments, and over their labeling into categories. The process of drawing samples from the joint distribution can be interpreted as first sampling tilings, followed by sampling labelings conditioned on the choice of a particular tiling. We learn the segmentation and labeling parameters jointly, based on maximum likelihood with a novel estimation procedure we refer to as incremental saddle-point approximation. The partition function over tilings and labelings is increasingly more accurately approximated by including incorrect configurations that are rated as probable by candidate models during learning. State of the art results are reported on the Berkeley, Stanford and Pascal VOC datasets, where an improvement of 28 % was achieved for the segmentation task only (tiling), and an accuracy of 47.8 % was obtained on the test set of VOC12 for semantic labeling (JSL).

Publiceringsår

2014

Språk

Engelska

Sidor

40-57

Publikation/Tidskrift/Serie

International Journal of Computer Vision

Volym

107

Issue

1

Dokumenttyp

Artikel i tidskrift

Förlag

Springer

Ämne

  • Mathematics

Nyckelord

  • Image segmentation
  • Image labeling
  • Semantic segmentation
  • Statistical
  • models
  • Learning and categorization

Status

Published

ISBN/ISSN/Övrigt

  • ISSN: 1573-1405