Webbläsaren som du använder stöds inte av denna webbplats. Alla versioner av Internet Explorer stöds inte längre, av oss eller Microsoft (läs mer här: * https://www.microsoft.com/en-us/microsoft-365/windows/end-of-ie-support).

Var god och använd en modern webbläsare för att ta del av denna webbplats, som t.ex. nyaste versioner av Edge, Chrome, Firefox eller Safari osv.

Growth of GaP nanotree structures by sequential seeding of 1D nanowires

Författare

Summary, in English

Complex nanostructures are becoming increasingly important for the development of nanoscale devices and functional nanomaterials. Precise control of size and morphology of these structures is critical to their fabrication and exploitation. We have developed a method for stepwise growth of tree-like nanostructures via the vapour liquid-solid (VLS) growth mode, demonstrated for III-V semiconductor materials. This method uses the initial seeding of nanowires by catalytic aerosol nanoparticles to form the trunk, followed by sequential seeding of branching structures. Here we present a detailed study of the growth of these complex structures using Gap. Diameter of each level of nanowires is directly determined by seed particle diameters, and number of branches is determined by seed particle density. Growth rate is shown to increase with temperature to a maximum corresponding to the temperature of complete decomposition of the Group-III precursor material, and subsequently decrease due to competition with bulk growth. Growth rate also depends on flow of the Group-III precursor, but not on the Group-V precursor. Finally, there is a relationship between the number of branches and their growth rate, suggesting that material diffusion plays a role in nanowire branch growth. (C) 2004 Elsevier B.V. All rights reserved.

Publiceringsår

2004

Språk

Engelska

Sidor

131-137

Publikation/Tidskrift/Serie

Journal of Crystal Growth

Volym

272

Issue

1-4

Dokumenttyp

Artikel i tidskrift

Förlag

Elsevier

Ämne

  • Condensed Matter Physics

Nyckelord

  • semiconducting III-V
  • structures
  • metalorganic vapor phase epitaxy
  • materials

Status

Published

ISBN/ISSN/Övrigt

  • ISSN: 0022-0248