Webbläsaren som du använder stöds inte av denna webbplats. Alla versioner av Internet Explorer stöds inte längre, av oss eller Microsoft (läs mer här: * https://www.microsoft.com/en-us/microsoft-365/windows/end-of-ie-support).

Var god och använd en modern webbläsare för att ta del av denna webbplats, som t.ex. nyaste versioner av Edge, Chrome, Firefox eller Safari osv.

Alamethicin permeabilizes the plasma membrane and mitochondria but not the tonoplast in tobacco (Nicotiana tabacum L. cv Bright Yellow) suspension cells

Författare

Summary, in English

The ion channel-forming peptide AlaM (alamethicin) is known to permeabilize isolated mitochondria as well as animal cells. When intact tobacco (Nicotiana tabacum L.) Bright Yellow-2 cells were treated with AlaM, the cells became permeable for low-molecular-mass molecules as shown by induced leakage of NAD(P)(+). After the addition of cofactors and substrates, activities of cytosolic as well as mitochondrial respiratory enzymes could be directly determined inside the permeabilized cells. However, at an AlaM concentration at which the cytoplasmic enzymes were maximally accessible, the vacuole remained intact, as indicated by an unaffected tonoplast proton gradient. Low-flux permeabilization of plasma membranes and mitochondria at moderate AlaM concentrations was reversible and did not affect cell vigour. Higher AlaM concentrations induced cell death. After the addition of catalase that removes the H2O2 necessary for NADH oxidation by apoplastic peroxidases, mitochondrial oxygen consumption could be measured in permeabilized cells. Inhibitor-sensitive oxidation of the respiratory substrates succinate, malate and NADH was observed after the addition of the appropriate coenzymes (ATP, NAD(+)). The capacities of different pathways in the respiratory electron-transport chain could thus be determined directly. We conclude that AlaM permeabilization provides a very useful tool for monitoring metabolic pathways or individual enzymes in their native proteinaccous environment with controlled cofactor concentrations. Possible uses and limitations of this method for plant cell research are discussed.

Publiceringsår

2005

Språk

Engelska

Sidor

695-704

Publikation/Tidskrift/Serie

Biochemical Journal

Volym

389

Issue

Pt 3

Dokumenttyp

Artikel i tidskrift

Förlag

Portland Press

Ämne

  • Biochemistry and Molecular Biology

Nyckelord

  • respiratory enzyme
  • alamethicin permeabilization
  • plant cell survival
  • mitochondria
  • membrane
  • plasma
  • tonoplast

Status

Published

Forskningsgrupp

  • Plant Biology

ISBN/ISSN/Övrigt

  • ISSN: 0264-6021