Webbläsaren som du använder stöds inte av denna webbplats. Alla versioner av Internet Explorer stöds inte längre, av oss eller Microsoft (läs mer här: * https://www.microsoft.com/en-us/microsoft-365/windows/end-of-ie-support).

Var god och använd en modern webbläsare för att ta del av denna webbplats, som t.ex. nyaste versioner av Edge, Chrome, Firefox eller Safari osv.

Process-based estimates of terrestrial ecosystem isoprene emissions: incorporating the effects of a direct CO2-isoprene interaction

Författare

  • Almut Arneth
  • U. Niinemets
  • S. Pressley
  • J. Back
  • P. Hari
  • T. Karl
  • S. Noe
  • I. C. Prentice
  • D. Serca
  • Thomas Hickler
  • A. Wolf
  • Benjamin Smith

Summary, in English

In recent years evidence has emerged that the amount of isoprene emitted from a leaf is affected by the CO2 growth environment. Many - though not all - laboratory experiments indicate that emissions increase significantly at below-ambient CO2 concentrations and decrease when concentrations are raised to above-ambient. A small number of process-based leaf isoprene emission models can reproduce this CO2 stimulation and inhibition. These models are briefly reviewed, and their performance in standard conditions compared with each other and to an empirical algorithm. One of the models was judged particularly useful for incorporation into a dynamic vegetation model framework, LPJ-GUESS, yielding a tool that allows the interactive effects of climate and increasing CO2 concentration on vegetation distribution, productivity, and leaf and ecosystem isoprene emissions to be explored. The coupled vegetation dynamics-isoprene model is described and used here in a mode particularly suited for the ecosystem scale, but it can be employed at the global level as well. Annual and/or daily isoprene emissions simulated by the model were evaluated against flux measurements ( or model estimates that had previously been evaluated with flux data) from a wide range of environments, and agreement between modelled and simulated values was generally good. By using a dynamic vegetation model, effects of canopy composition, disturbance history, or trends in CO2 concentration can be assessed. We show here for five model test sites that the suggested CO2-inhibition of leaf-isoprene metabolism can be large enough to offset increases in emissions due to CO2-stimulation of vegetation productivity and leaf area growth. When effects of climate change are considered atop the effects of atmospheric composition the interactions between the relevant processes will become even more complex. The CO2-isoprene inhibition may have the potential to significantly dampen the expected steep increase of ecosystem isoprene emission in a future, warmer atmosphere with higher CO2 levels; this effect raises important questions for projections of future atmospheric chemistry, and its connection to the terrestrial vegetation and carbon cycle.

Publiceringsår

2007

Språk

Engelska

Sidor

31-53

Publikation/Tidskrift/Serie

Atmospheric Chemistry and Physics

Volym

7

Dokumenttyp

Artikel i tidskrift

Förlag

Copernicus GmbH

Ämne

  • Physical Geography

Status

Published

ISBN/ISSN/Övrigt

  • ISSN: 1680-7324