Webbläsaren som du använder stöds inte av denna webbplats. Alla versioner av Internet Explorer stöds inte längre, av oss eller Microsoft (läs mer här: * https://www.microsoft.com/en-us/microsoft-365/windows/end-of-ie-support).

Var god och använd en modern webbläsare för att ta del av denna webbplats, som t.ex. nyaste versioner av Edge, Chrome, Firefox eller Safari osv.

Dissociation between short-term increased graft survival and long-term functional improvements in Parkinsonian rats overexpressing glial cell line-derived neurotrophic factor.

Författare

  • Biljana Georgievska
  • Thomas Carlsson
  • Benjamin Lacar
  • Christian Winkler
  • Deniz Kirik

Summary, in English

The present study was designed to analyse whether continuous overexpression of glial cell line-derived neurotrophic factor (GDNF) in the striatum by a recombinant lentiviral vector can provide improved cell survival and additional long-term functional benefits after transplantation of fetal ventral mesencephalic cells in Parkinsonian rats. A four-site intrastriatal 6-hydroxydopamine lesion resulted in an 80–90% depletion of nigral dopamine cells and striatal fiber innervation, leading to stable motor impairments. Histological analysis performed at 4 weeks after grafting into the GDNF-overexpressing striatum revealed a twofold increase in the number of surviving tyrosine hydroxylase (TH)-positive cells, as compared with grafts placed in control (green fluorescent protein-overexpressing) animals. However, in animals that were allowed to survive for 6 months, the numbers of surviving TH-positive cells in the grafts were equal in both groups, suggesting that the cells initially protected at 4 weeks failed to survive despite the continued presence of GDNF. Although cell survival was similar in both grafted groups, the TH-positive fiber innervation density was lower in the GDNF-treated grafted animals (30% of normal) compared with animals with control grafts (55% of normal). The vesicular monoamine transporter-2-positive fiber density in the striatum, by contrast, was equal in both groups, suggesting that long-term GDNF overexpression induced a selective down-regulation of TH in the grafted dopamine neurons. Behavioral analysis in the long-term grafted animals showed that the control grafted animals improved their performance in spontaneous motor behaviors to approximately 50% of normal, whereas the GDNF treatment did not provide any additional recovery.

Avdelning/ar

Publiceringsår

2004

Språk

Engelska

Sidor

3121-3130

Publikation/Tidskrift/Serie

European Journal of Neuroscience

Volym

20

Issue

11

Dokumenttyp

Artikel i tidskrift

Förlag

Wiley-Blackwell

Ämne

  • Neurosciences

Status

Published

Forskningsgrupp

  • Neurobiology

ISBN/ISSN/Övrigt

  • ISSN: 1460-9568