Webbläsaren som du använder stöds inte av denna webbplats. Alla versioner av Internet Explorer stöds inte längre, av oss eller Microsoft (läs mer här: * https://www.microsoft.com/en-us/microsoft-365/windows/end-of-ie-support).

Var god och använd en modern webbläsare för att ta del av denna webbplats, som t.ex. nyaste versioner av Edge, Chrome, Firefox eller Safari osv.

Morphological and functional in vitro and in vivo characterization of the mouse corpus cavernosum

Författare

Summary, in English

1. In normal mice, the distribution of adrenergic, cholinergic, some peptidergic, and neuronal nitric oxide synthase (nNOS)-containing nerves were investigated. Functional in vitro correlates were obtained. An in vivo model was developed in which erectile haemodynamics in response to drugs or nerve-stimulation were studied. 2. Immunoreactivities for vesicular acetylcholine transporter protein (VAChT), nNOS-, and vasoactive intestinal polypeptide (VIP), co-existed in nerve fibres and terminal varicosities. Immunoreactivities for neuropeptide Y (NPY) and tyrosine hydroxylase (TH) were found in the same nerve structures. 3. Chemical sympathectomy abolished TH- and NPY-IR nerve structures in cavernous smooth muscle bundles. The distribution of calcitonin gene-related peptide (CGRP)-, nNOS-, VAChT- and VIP-IR nerve structures was unchanged. 4. In endothelial cells of the central and helicine arteries, veins and venules, intense immunoreactivity for endothelial NOS (eNOS) was observed. No distinct eNOS-IR cells were found lining the cavernous sinusoids. 5. In vitro, nerve-induced relaxations were verified, and endothelial NO/cyclic GMP-mediated relaxant responses were established. VIP and CGRP had small relaxant effects. A functioning adenylate cyclase/cyclic AMP pathway was confirmed. 6. Neuronal excitatory responses were abolished by prazosin, or forskolin. VIP and CGRP counteracted contractions, whereas NPY and scopolamine enhanced excitatory responses. 7. In vivo, erectile responses were significantly attenuated by L-NAME (50 mg kg(-1)) and facilitated by sildenafil (200 microg kg(-1)). 8. It is concluded that the mouse is a suitable model for studies of erectile mechanisms in vitro and in vivo.

Publiceringsår

2001-03

Språk

Engelska

Sidor

41-1333

Publikation/Tidskrift/Serie

British Journal of Pharmacology

Volym

132

Issue

6

Dokumenttyp

Artikel i tidskrift

Förlag

Wiley

Nyckelord

  • Animals
  • Electric Stimulation
  • Immunohistochemistry
  • Male
  • Mice
  • Muscle Contraction
  • Norepinephrine
  • Penis

Status

Published

Forskningsgrupp

  • Experimental Infection Medicine, Malmö

ISBN/ISSN/Övrigt

  • ISSN: 0007-1188