Webbläsaren som du använder stöds inte av denna webbplats. Alla versioner av Internet Explorer stöds inte längre, av oss eller Microsoft (läs mer här: * https://www.microsoft.com/en-us/microsoft-365/windows/end-of-ie-support).

Var god och använd en modern webbläsare för att ta del av denna webbplats, som t.ex. nyaste versioner av Edge, Chrome, Firefox eller Safari osv.

Efficient simulations of tubulin-driven axonal growth

Författare

Summary, in English

This work concerns efficient and reliable numerical simulations of the dynamic behaviour of a moving-boundary model for tubulin-driven axonal growth. The model is nonlinear and consists of a coupled set of a partial differential equation (PDE) and two ordinary differential equations. The PDE is defined on a computational domain with a moving boundary, which is part of the solution. Numerical simulations based on standard explicit time-stepping methods are too time consuming due to the small time steps required for numerical stability. On the other hand standard implicit schemes are too complex due to the nonlinear equations that needs to be solved in each step. Instead, we propose to use the Peaceman–Rachford splitting scheme combined with temporal and spatial scalings of the model. Simulations based on this scheme have shown to be efficient, accurate, and reliable which makes it possible to evaluate the model, e.g. its dependency on biological and physical model parameters. These evaluations show among other things that the initial axon growth is very fast, that the active transport is the dominant reason over diffusion for the growth velocity, and that the polymerization rate in the growth cone does not affect the final axon length.

Avdelning/ar

Publiceringsår

2016-08

Språk

Engelska

Sidor

45-63

Publikation/Tidskrift/Serie

Journal of Computational Neuroscience

Volym

41

Issue

1

Dokumenttyp

Artikel i tidskrift

Förlag

Springer

Ämne

  • Computational Mathematics
  • Neurosciences

Nyckelord

  • Neurite elongation
  • Partial differential equation
  • Numerical simulation
  • Peaceman–Rachford splitting scheme
  • Polymerization
  • Microtubule cytoskeleton

Status

Published

Forskningsgrupp

  • Mathematical Imaging Group
  • Partial differential equations
  • Numerical Analysis

ISBN/ISSN/Övrigt

  • ISSN: 1573-6873