Webbläsaren som du använder stöds inte av denna webbplats. Alla versioner av Internet Explorer stöds inte längre, av oss eller Microsoft (läs mer här: * https://www.microsoft.com/en-us/microsoft-365/windows/end-of-ie-support).

Var god och använd en modern webbläsare för att ta del av denna webbplats, som t.ex. nyaste versioner av Edge, Chrome, Firefox eller Safari osv.

Total hydrocarbon flux dynamics at a subarctic mire in northern Sweden

Författare

  • Kristina Baeckstrand
  • Patrick M. Crill
  • Mikhail Mastepanov
  • Torben Christensen
  • David Bastviken

Summary, in English

This is a study of the spatial and temporal variability of total hydrocarbon (THC) emissions from vegetation and soil at a subarctic mire, northern Sweden. THCs include methane (CH4) and nonmethane volatile organic compounds (NMVOCs), both of which are atmospherically important trace gases and constitute a significant proportion of the carbon exchange between biosphere and atmosphere. Reliable characterization of the magnitude and the dynamics of the THC fluxes from high latitude peatlands are important when considering to what extent trace gas emissions from such ecosystems may change and feed back on climate regulation as a result of warmer climate and melting permafrost. High frequency measurements of THC and carbon dioxide (CO2) were conducted during four sequential growing seasons in three localities representing the trophic range of plant communities at the mire. The magnitude of the THC flux followed the moisture gradient with increasing emissions from a dry Palsa site (2.2 +/- 0.1 mgC m(-2) d(-1)), to a wet intermediate melt feature with Sphagnum spp. (28 +/- 0.3 mgC m(-2) d(-1)) and highest emissions from a wet Eriophorum spp. site (122 +/- 1.4 mgC m(-2) d(-1)) (overall mean +/- 1 SE, n = 2254, 2231 and 2137). At the Palsa site, daytime THC flux was most strongly related to air temperature while daytime THC emissions at the Sphagnum site had a stronger relation to ground temperature. THC emissions at both the wet sites were correlated to net ecosystem exchange of CO2. An overall spatial correlation indicated that areas with highly productive vegetation communities also had high THC emission potential.

Publiceringsår

2008

Språk

Engelska

Publikation/Tidskrift/Serie

Journal of Geophysical Research

Volym

113

Issue

G3

Dokumenttyp

Artikel i tidskrift

Förlag

Wiley-Blackwell

Ämne

  • Physical Geography

Status

Published

ISBN/ISSN/Övrigt

  • ISSN: 2156-2202