Webbläsaren som du använder stöds inte av denna webbplats. Alla versioner av Internet Explorer stöds inte längre, av oss eller Microsoft (läs mer här: * https://www.microsoft.com/en-us/microsoft-365/windows/end-of-ie-support).

Var god och använd en modern webbläsare för att ta del av denna webbplats, som t.ex. nyaste versioner av Edge, Chrome, Firefox eller Safari osv.

Experimental study and modeling of the heat flux acting on the tool flank when machining

Författare

Summary, in English

Adequate setting of the boundary conditions for the heat equation when modeling the temperature distribution in the cutting tool is one of the key points. The boundary conditions on the tool surfaces can be divided into two groups: conditions that describe heat losses (heat exchange with the environment) and conditions that characterize the heat source that heats up the tool (heat flux from the cutting zone). Additional complexity in modeling is provided by the fact that during cutting the surface on which the heat source acts changes, for example, due to wear on the flank surface. In this paper, a method is proposed for measuring the power of a heat source acting on the flank surface. The hardware of the method includes a sensor equipped tool and specially manufactured inserts that imitate the geometry of worn flank surface. In turn, the software is based on the method of solving the inverse heat conduction problem in metal cutting, which allows restoring the heat flux flowing into the tool by measuring temperature with sensors installed in the toolholder. The experimental plan included inserts with negative and positive rake, different cutting speeds (190, 235, 280 m/min), and feeds (0.15, 0.3, 0.45 mm/rev).

Ämne

  • Manufacturing, Surface and Joining Technology

Nyckelord

  • Heat flux
  • Inverse technique
  • Machining

Conference name

18th CIRP Conference on Modeling of Machining Operations, CMMO 2021

Conference date

2021-06-15 - 2021-06-17

Conference place

Ljubljana, Slovenia

Status

Published

ISBN/ISSN/Övrigt

  • ISSN: 2212-8271