Javascript verkar inte påslaget? - Vissa delar av Lunds universitets webbplats fungerar inte optimalt utan javascript, kontrollera din webbläsares inställningar.
Du är här

Wavelet based outlier correction for power controlled turning point detection in surveillance systems Economic Modelling

  • Yushu Li
Publiceringsår: 2013
Språk: Engelska
Sidor: 317-321
Publikation/Tidskrift/Serie: Economic Modelling
Volym: 30
Dokumenttyp: Artikel i tidskrift
Förlag: Elsevier


Detection turning points in unimodel has various applications to time series which have cyclic periods. Related techniques are widely explored in the field of statistical surveillance, that is, on-line turning point detection procedures. This paper will first present a power controlled turning point detection method based on the theory of the likelihood ratio test in statistical surveillance. Next we show how outliers will influence the performance of this methodology. Due to the sensitivity of the surveillance system to outliers, we finally present a wavelet multiresolution (MRA) based outlier elimination approach, which can be combined with the on-line turning point detection process and will then alleviate the false alarm problem introduced by the outliers.


  • Economics
  • Unimodel
  • Turning point
  • Statistical surveillance
  • Outlier
  • Wavelet multi-resolution
  • Threshold.


  • ISSN: 0264-9993

Box 117, 221 00 LUND
Telefon 046-222 00 00 (växel)
Telefax 046-222 47 20
lu [at] lu [dot] se

Fakturaadress: Box 188, 221 00 LUND
Organisationsnummer: 202100-3211
Om webbplatsen