Javascript är avstängt eller blockerat i din webbläsare. Detta kan leda till att vissa delar av vår webbplats inte fungerar som de ska. Sätt på javascript för optimal funktionalitet och utseende.

Webbläsaren som du använder stöds inte av denna webbplats. Alla versioner av Internet Explorer stöds inte längre, av oss eller Microsoft (läs mer här: * https://www.microsoft.com/en-us/microsoft-365/windows/end-of-ie-support).

Var god och använd en modern webbläsare för att ta del av denna webbplats, som t.ex. nyaste versioner av Edge, Chrome, Firefox eller Safari osv.

Horizontal gene transfer promoted evolution of the ability to propagate under anaerobic conditions in yeasts

Författare

  • Z Gojković
  • W Knecht
  • E Zameitat
  • J Warneboldt
  • J-B Coutelis
  • Y Pynyaha
  • C Neuveglise
  • K Møller
  • M Löffler
  • J Piskur

Summary, in English

The ability to propagate under anaerobic conditions is an essential and unique trait of brewer's or baker's yeast ( Saccharomyces cervisiae). To understand the evolution of facultative anaerobiosis we studied the dependence of de novo pyrimidine biosynthesis, more precisely the fourth enzymic activity catalysed by dihydroorotate dehydrogenase (DHODase), on the enzymes of the respiratory chain in several yeast species. While the majority of yeasts possess a mitochondrial DHODase, Saccharomyces cerevisiae has a cytoplasmatic enzyme, whose activity is independent of the presence of oxygen. From the phylogenetic point of view, this enzyme is closely related to a bacterial DHODase from Lactococcus lactis. Here we show that S. kluyveri, which separated from the S. cerevisiae lineage more than 100 million years ago, represents an evolutionary intermediate, having both cytoplasmic and mitochondrial DHODases. We show that these two S. kluyveri enzymes, and their coding genes, differ in their dependence on the presence of oxygen. Only the cytoplasmic DHODase promotes growth in the absence of oxygen. Apparently a Saccharomyces yeast progenitor which had a eukaryotic-like mitochondrial DHODase acquired a bacterial gene for DHODase, which subsequently allowed cell growth gradually to become independent of oxygen.

Publiceringsår

2004

Språk

Engelska

Sidor

387-393

Publikation/Tidskrift/Serie

Molecular Genetics and Genomics

Volym

271

Issue

4

Dokumenttyp

Artikel i tidskrift

Förlag

Springer

Ämne

  • Biological Sciences

Nyckelord

  • Anaerobiosis
  • Biological Evolution
  • Cell Division
  • Cytoplasm/enzymology
  • DNA, Fungal/genetics
  • Electron Transport
  • Gene Transfer, Horizontal
  • Mitochondria/enzymology
  • Oxidoreductases Acting on CH-CH Group Donors/metabolism
  • Oxygen/metabolism
  • Phylogeny
  • Pyrimidines/biosynthesis
  • Saccharomyces cerevisiae/enzymology
  • Subcellular Fractions/enzymology

Status

Published

ISBN/ISSN/Övrigt

  • ISSN: 1617-4615