Webbläsaren som du använder stöds inte av denna webbplats. Alla versioner av Internet Explorer stöds inte längre, av oss eller Microsoft (läs mer här: * https://www.microsoft.com/en-us/microsoft-365/windows/end-of-ie-support).

Var god och använd en modern webbläsare för att ta del av denna webbplats, som t.ex. nyaste versioner av Edge, Chrome, Firefox eller Safari osv.

High-k dielectrics on (100) and (110) n-InAs: Physical and electrical characterizations

Författare

  • C. H. Wang
  • G. Doornbos
  • G. Astromskas
  • G. Vellianitis
  • R. Oxland
  • M. C. Holland
  • M. L. Huang
  • C. H. Lin
  • C. H. Hsieh
  • Y. S. Chang
  • T. L. Lee
  • Y. Y. Chen
  • Peter Ramvall
  • Erik Lind
  • W. C. Hsu
  • Lars-Erik Wernersson
  • R. Droopad
  • M. Passlack
  • C. H. Diaz

Summary, in English

Two high-k dielectric materials (Al2O3 and HfO2) were deposited on n-type (100) and (110) InAs surface orientations to investigate physical properties of the oxide/semiconductor interfaces and the interface trap density (D-it). X-ray photoelectron spectroscopy analyses (XPS) for native oxides of (100) and (110) as-grown n-InAs epi wafers show an increase in As-oxide on the (100) surface and an increase in InOx on the (110) surface. In addition, XPS analyses of high-k (Al2O3 and HfO2) on n-InAs epi show that the intrinsic native oxide difference between (100) and (110) epi surfaces were eliminated by applying conventional in-situ pre-treatment (TriMethyAluminium (TMA)) before the high-k deposition. The capacitance-voltage (C-V) characterization of HfO2 and Al2O3 MOSCAPs on both types of n-InAs surfaces shows very similar C-V curves. The interface trap density (D-it) profiles show D-it minima of 6.1 x 10(12/)6.5 x 10(12) and 6.6 x 10(12)/7.3 x 10(12) cm(-2) eV(-1) for Al2O3 and HfO2, respectively for (100) and (110) InAs surfaces. The similar interface trap density (D-it) on (100) and (110) surface orientation were observed, which is beneficial to future InAs FinFET device with both (100) and (110) surface channel orientations present. (C) 2014 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution 3.0 Unported License.

Publiceringsår

2014

Språk

Engelska

Publikation/Tidskrift/Serie

AIP Advances

Volym

4

Issue

4

Dokumenttyp

Artikel i tidskrift

Förlag

American Institute of Physics (AIP)

Ämne

  • Electrical Engineering, Electronic Engineering, Information Engineering
  • Condensed Matter Physics

Status

Published

ISBN/ISSN/Övrigt

  • ISSN: 2158-3226