Javascript verkar inte påslaget? - Vissa delar av Lunds universitets webbplats fungerar inte optimalt utan javascript, kontrollera din webbläsares inställningar.
Du är här

Fourier meets Möbius: fast subset convolution

Publiceringsår: 2007
Språk: Engelska
Sidor: 67-74
Publikation/Tidskrift/Serie: Proceedings of the thirty-ninth annual ACM symposium on Theory of computing
Dokumenttyp: Konferensbidrag


We present a fast algorithm for the subset convolution problem:given functions f and g defined on the lattice of subsets of ann-element set n, compute their subset convolution f*g, defined for S⊆ N by [ (f * g)(S) = [T ⊆ S] f(T) g(S/T),,]where addition and multiplication is carried out in an arbitrary ring. Via Möbius transform and inversion, our algorithm evaluates the subset convolution in O(n2 2n) additions and multiplications, substanti y improving upon the straightforward O(3n) algorithm. Specifically, if the input functions have aninteger range [-M,-M+1,...,M], their subset convolution over the ordinary sum--product ring can be computed in Õ(2n log M) time; the notation Õ suppresses polylogarithmic factors.Furthermore, using a standard embedding technique we can compute the subset convolution over the max--sum or min--sum semiring in Õ(2n M) time.

To demonstrate the applicability of fast subset convolution, wepresent the first Õ(2k n2 + n m) algorithm for the Steiner tree problem in graphs with n vertices, k terminals, and m edges with bounded integer weights, improving upon the Õ(3kn + 2k n2 + n m) time bound of the classical Dreyfus-Wagner algorithm. We also discuss extensions to recent Õ(2n)-time algorithms for covering and partitioning problems (Björklund and Husfeldt, FOCS 2006; Koivisto, FOCS 2006).


  • Computer Science


Annual ACM Symposium on Theory of Computing
  • Exact algorithms
  • Algorithms-lup-obsolete
  • ISBN: 978-1-59593-631-8

Box 117, 221 00 LUND
Telefon 046-222 00 00 (växel)
Telefax 046-222 47 20
lu [at] lu [dot] se

Fakturaadress: Box 188, 221 00 LUND
Organisationsnummer: 202100-3211
Om webbplatsen